Deformation-driven diffusion and plastic flow in amorphous granular pillars.
نویسندگان
چکیده
We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.
منابع مشابه
Irreversibility transition of colloidal polycrystals under cyclic deformation
Cyclically loaded disordered particle systems, such as granular packings and amorphous media, display a non-equilibrium phase transition towards irreversibility. Here, we investigate numerically the cyclic deformation of a colloidal polycrystal with impurities and reveal a transition to irreversible behavior driven by the displacement of dislocations. At the phase transition we observe enhanced...
متن کاملIn situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon
The mechanism responsible for deformation-induced crystalline-to-amorphous transition (CAT) in silicon is still under considerable debate, owing to the absence of direct experimental evidence. Here we have devised a novel core/shell configuration to impose confinement on the sample to circumvent early cracking during uniaxial compression of submicron-sized Si pillars. This has enabled large pla...
متن کاملUniversality of slip avalanches in flowing granular matter.
The search for scale-bridging relations in the deformation of amorphous materials presents a current challenge with tremendous applications in material science, engineering and geology. While generic features in the flow and microscopic dynamics support the idea of a universal scaling theory of deformation, direct microscopic evidence remains poor. Here, we provide the first measurement of inte...
متن کاملGrain Boundary Rotations near Crack Tips in Deformed Nanomaterials
A special mechanism/mode of plastic deformation occurring through stress-driven rotations of low-angle grain boundaries (GBs) near crack tips in nanocrystalline and ultrafinegrained (UFG) materials is theoretically described. It is demonstrated that such rotations of GBs represent energetically favorable processes in wide ranges of parameters characterizing precracked specimens with nanocrystal...
متن کاملNonlinear elasto-plastic model for dense granular flow
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity (Jiang and Liu 2003) and rate-sensitive plastic flow (Jop et al. 2006) are combined into one universal granular continuum law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2015